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Mean solutions for the Kuramoto-Sivashinsky equation with incoming boundary conditions
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We consider herein the Kuramoto-Sivashingkys) equation with incoming boundary conditions. Using a
projection operator method, we have derived a set of closed equations for the mean quantities, called a model
equation, from the KS equation. One of the characteristics of the model equation is that it does not include any
empirical parameters. The adequacy of the model equation is verified by comparing solutions of the model
equation with time-averaged solutions obtained from the numerical simulation of the KS equation.
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[. INTRODUCTION mated the effective diffusion constant from its shocklike
. ) ) mean solution.

Although the solutions of chaotic equations are not pre- |n accordance with Yakhot's suggestion, we can assume
dictable, the mean or large-scale components of these equgrat the ensemble average) of a solutionu for the KS
Flops are predlctable. Th_e ability to predict the mean q“a”t'%quation satisfies the Burgers equation
is important, especially in turbulent flows. In the present pa-
per, we consider the KS equation, rather than the Navier- a{u)
Stokes equation, because it is one of the simplest partial -
differential equations for treating chaos or turbulence.

Yakhot[1] suggested that the large-scale properties of the h is the effective diffusi Th .
KS equation with random initial conditions can be modeled” erev Is the effective diffusion constant. The constans
an empirical parameter because its value cannot be deter-

by a noisy Burgers equation using the dynamic renormaliza®"’ )
tion group(RG) method. The dynamic RG method has also":c'nhed by the dynamic RG rﬁeghod. Tgel closed equf(ﬂrfDKS
been applied to the KS equation with random forcing in the®f the mean quantitfu) is called a model equation of the
field of surface growti2,3]. The dynamic RG method ad- equation. Thg soluthn of the model equ.atlon is in good
equately predicts both the roughness exponent and the dfgreement with the time-averaged numerical profile of the
namic exponent which characterize the scaling laws of th&S equation under certain fixed boundary conditigisif a
interface width. suitable value is chosen for the undetermined parameter
However, although it is possible to determine the ratio N the present paper, we derive another model equation for
D/+3 of the noise strength squared to the cube of the the KS equatlor) using the prOJ_ectlon operator methpd. On_e
effective diffusion constant from the fixed points of the RG of the characteristics of the derived model equation is that it
flow equation,D and » remain unresolved. Hence it is nec- 40€s not include any undetermined parameters such. as
essary to rely on numerical simulation in order to determinel "€ Procedure is similar to that reported by Sato and Oka-
the effective diffusion constant, which is an important valueMura[8], who derived an averaged equation from a forced
for obtaining information on mean quantities. Some numeriPe€ndulum equation. However, the present calculation is
cal simulations have estimated the effective diffusion confather complicated because, unlike the pendulum equation
stantv to be v~ 10 for infinitely large scales with periodic Which is an ordinary equation, the KS equation is a partial
boundary conditiong4,5] and with fixed boundary condi- differential equation in one-dimensional space. We examine
tions [6]. the adequacy of the model equation by comparing its solu-
So far, only second-order statistical quantities such as thons with time-averaged numerical solutions of the KS
interface width and energy spectrum have been investigategduation.
for the KS equation because the first-order statistical quantity
is zero and thus unimportant for the KS equation Wlth_ peri- II. DERIVATION OF AN AVERAGED EQUATION
odic boundary conditions. Sakagug¢bi numerically studied
the KS equation with fixed boundary conditions and esti- We treat the KS equation

g{uy ) _
at W ax o

0, (1.7

du  Jdu % d%
. . —— U —_—+—5+-,=0, (2.1
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u(=oo,t) ==U,, u(e,t)=U,, (2.2

whereU,, is a given constant. The fixed boundary conditions (e8)
are used here instead of incoming boundary condit{@dr3d

because theoretically it is difficult to treat the incoming
boundary conditions at infinity. Note that both the fixed and
the incoming boundary conditions for averaging give the

same expressions,
U=2,1)) ==U,, (u(e,t))=U.,.
Using the variable transform

y =tanhKXx, (2.3
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@Gy .

Pi0) = 0, (2.9

wheref(Q) is an arbitrary function ofi and{i,,= 0,(0). Us-
ing the projection operatdi7], we can transform the nonlin-
ear termN,[((t)] into

N{0(t)] = € [PNy(@) + ONy(0)]

t
= Qi (1) - f Lr(9)Uy(t = 9)ds+ry(t),
0

whereK is a given constant, we obtain from the KS equationWhere

(2.1) and the boundary condition&.2)

ou_ G, ot ot ot
ot~ oy oy Cayr rayd Payh
(2.9
with boundary conditions
u-1t=-U,, ult)=U,, (2.5
where
c1=K(1-y?,

o= = 2K%y(1 -y?)(8K? - 1 - 1K%?),
3= K*(1 -y?)*(8K*~ 1 - 3&K??),
Cq= 12Ky (1 -y?)°,

cs=— K41 -y’

Using anN-truncated series of Chebyshev polynomials of

the first kindT,(y), we approximateu(y,t) as

N

u(y,t) = 2 Un(OTir(y). (2.6)

m=0

Chebyshev transformation of E@.4) and elimination of the
highest termgiy_4(t), Gy(t) yield N-2 time evolution equa-

tions,

N-2

Bl N 0]+ S Lo () + o
j=1

dt

m=1,2,...N-2, (2.7)

(2.9
0=1-P,
O = <Nmal>
o)
([Arm(D]0y)

[yt) = - —2 =2 2.10
(t) @ (2.10
rm(t) = exptQA) ONy,. (2.11

The first term of the right-hand side of E@.9) denotes the
projected term showing coherent motion. The second term is
also related to coherent motion, which is extracted from the
unprojected term. The memory functidi(t) in the second
term has an effect on the time dependent dissipation due to
chaotic mixing, which corresponds to the eddy viscosity in
turbulence. The last term,(t) is considered to be a fluctu-
ating force because,(t) is related to the unprojected part
ON,, and its time evolution may be very complicated. A time
evolution operator\ is defined as

A=2

-2
=1

N N-2 9
Np(G) + X Lyl + Fp | =
n i=1 Ju

n

Now we make three assumptions in order to derive an
averaged equation from E@Q.7).
Assumption 1.No correlation for an infinite time:
tIim (Um(Gy) =t|im (O X0y
Assumption 2. Steady state for an infinite time:
lim 9(0 0 =0
t—oo dt m v '

Assumption 3.Loss of memory effect for large time:

whereN,[G(1)], EJN:‘f Lm;U;(t), andF, denote nonlinear, lin-

ear, and forcing terms, respectively. There is no forcing term

in the KS equatiorf2.1) itself, whereas Eq2.7) has a forc-

ing term which arises from the fixed boundary conditions.
We introduce a projection operat®r as

f [T m(s)|ds < <.
0

Note that Assumption 3 gives the relation
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t 0
lim J ()i (t—9s)ds=lim Uy(t) | T(S)ds.
t—o Jo t—o0 0
Using the above assumptions and EB.7), we obtain an
averaged equation:

N-2

Qur(y(20)) + 2 Liy(@(2)) = y(g(20)) + Fy= 0,
i=1

(2.12

where

Ym= J ’ Iy(tdt. (2.13

0
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useful information about mean quantit,,) as shown in
Appendix B. Instead we can approximately evaluatg
which is a function ofl'(t), by usingT,=TI'(0) and T,
EI"rﬂ(O). Here, we make an assumption about the memory

function form.
Assumption 4. Form of memory function:

'yt =T, exp- ant), an>0. (3.1

The first-order Taylor expansion of E@3.1) aroundt=0
shows

The averaged equation is derived under reasonable assump-

tions but is not a closed equation for mean quan(ity=))

becausey,, includes higher-order moments and depends on Ym o

the time history.

We now show that the memory functidi,(t) can be
evaluated numerically as follow9,10]. Referring to Appen-
dix A, we can rewrite the memory functidny(t), Eq.(2.10),
as

Fm(f0)=¢m(fo)—f dty () Pt —11)
0

+f dtlf dty i, (6) Pt — t5) pleg — 1)
0 0

-t (_ l)nffo dll - ffn—l dtnlﬂm(tn)

0 0

Xty =tn) - Plig=11) + -+,

M (2.14)
where
(1) = = P(t) + Qeb(1), (2.15
1 /dNJa)].
BNt = @<%ul> , (2.16
1
1 /diy).
¢(t)=<a—i><l;;t(t)ul>. (2.17

We can evaluate the values of the right-hand side of Eq
(2.16 and (2.17 through numerical simulation. Laplace

transform of Eq(2.14) and formula(B2) yield
(2 = Qmh(2)

2=~ —
1+¢(2)

where Fm(z), g,’}‘](z), and ¢(z) are Laplace transforms of
I'n(1), ¢h(t), and ¢(1), respectively. The memory function

I',(t) can thus be evaluated.

11l. MODEL EQUATION
It is possible to evaluate,, in Eq.(2.12 exactly by using

S

| N (3.2
From Egs.(3.1), (3.2), and(2.13 we obtain
[
= Py
where
I'm=m(0), (3.3
L= tim(0) = (0) $(0). (3.9
We have other expressions fby, and fm such as
AQON,|C
m:_<[ QAZnJUD, (3.5
<U1
A(QA) QN
R EXCAVE TN a6
<U1

which appeared in the paper by Sato and Okanf@faThe
present expression@.3) and (3.4) are simpler than Egs.
(3.5 and (3.6) because operators such &asand Q are not
included. Note that we make no assumptions for the Markov
process such al(t) e« &(t).

Here, we make further assumptions.
Assumption 5. Symmetry of mean value:

(Gm()) =0,

The KS equation has an antisymmetry solution under the

if mis even.

antisymmetry initial and boundary conditions because the
KS equation is invariant under transformatioxs> —x and
u——u. However, a numerical solution breaks antisymmetry
because of its chaotic characteristics and numerical errors,
while its mean solution is expected to have antisymmetry.
Assumption 6.Zero variance:

(O = (A" (3.7

Numerical results show that the representative scale of the
mean profile is much larger than that of chaotic or fluctuating
motion [6] and hence Eq3.7) is a good approximation for
smallerm, while Eq.(3.7) is likely to be invalid for largem

Eq. (2.14). However, the result is trivial and provides no because
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(@) > (0" = 0. w
! ——
However, the invalidity of Eq(3.7) for larger m has little 06 ! \,/’/’
influence on the derivation of a model equation becdlgg ',?-‘,t Y
rapidly approaches zero for larger: Iﬁgél |I',“.\ i/
. AN AW
(0 =0(M, e<1. 3.9 ~100 -75 -50/ %2;'5(;(" l"'!,"zs\/ 50 75 100
Assumption 6 is therefore a good approximation due to sepa- / VT L |
ration between the scale of mean profile and that of chaotic S~ A
motion. This assumption may be the most disputable among =l 7 \_/6_6
those made in the present study. !
Assumption 7. Initial value on the attractor: FIG. 1. Three types of solutions of the model equat®n.0) for
N A U.,=0.61,K=0.05, andN=13: —-—, type |; — — — —, type II; —,
(G = (Oe(=2)). B9 oo P P
Condition (3.9) does not generally mean an initial value on
the attractor. However, the variance for the main components u(L/2,t) = ut(0,1), u(=L/2,t) =u=(0,t) (4.2)
. 1 p L 1 L p 1 L} -
is small and thus
R R R R whereup(x,t) and u,(x,t) are solutions of the KS equation
U= (U),  Up(20) = (Upy(0)), (2.1) with a periodic boundary condition under
for small m, which is consistent with Assumption 7. For L2
largem, Eq. (3.9) is also satisfied approximately because of Lf u;(x,t)dxz Unus
-L/2
(U =0, (Upy()) =0,
and
although L2
TRETR (TN [L/z Up(X,0)dx==Up,,
From Egs.(3.7), (3.9, and (2.12 we obtain a model . _ .
equation 4s.3.7. 39 (213 respectively. Since profiles at=-L/2 andx=L/2 travel to
the right and to the left, respectively, we have called Eg.
= A (4.2) the incoming boundary condition. It is easy to show
Qpy) + E LiniCi) = Ym0 + F =0, that uj travels to the left by transformationg=u;-U,,, X
i=1 =x+U,t, andT=t. Note that the boundary conditioii4.2)
differ from those by Sakaguclji6].
m=1,2,...N-2, (3.10 The average for numerical data is obtained by time aver-

which is a closed nonlinear algebraic equation(ipf). The aging defined as

highest order terndlly) is determined from Eq2.5). T 1 fT
u(x) =
T_ TO

u(x,t)dt, (4.3
T
IV. COMPARISON OF MODEL SOLUTIONS 0
AND NUMERICAL RESULTS where T, is selected in order to discard data far from the
) ) ) attractor and we seTy=1000. The ensemble average for
In this section, we compare solutions of the model equa; T is independent of time as a result of statistical station-

tion (3.10 and numerical solutions of the KS equati@l) gty and hence we assume that the ensemble average agrees

with incoming boundary conditiongt.2). with the time average due to ergodicity. We have made a
correction
A. Numerical conditions Lo
We have used a finite difference method for the spatial u(x,t) — —f u(x,t)dx — u(x,t)
derivative and the fourth-order Runge-Kutta method for time LJ 2

evolution. The spatial differenckx and the time stept are
chosen to bé\x=0.33 andAt=0.0002, respectively. The sys-
tem sizeL is L=400. The antisymmetry initial condition is
chosen to be

at every time step in order to maintain antisymmetry for the
mean profile.

. = B. Convergence of model solution
x.0) Upe+ 0.1 sirx/v2), forx=0, .1 W ve th i ebrai @10 for (&)
ux,V) = . s . e solve the nonlinear algebraic equati@i10 for (U,
- / < . . . .
B Uny* 0.1 Sir0/2), for x <0, using Newton’s method. Since the equation is extremely
where 142 is the wave number of the most unstable modecomplicated, we have omitted the terms of order higher than

and U, is a given parameter. The incoming boundary con-O(K’) and O(e") whereK and e are assumed to be small
ditions atx=+L/2 are parametersK is concerned with the variable transfo(zh3)
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TABLE 1. Values of « and its number for three types of

solutions.
Type of solutions Value ok Number ofx
Type | x=0.001 1
Type Il x=0.006 1
x=0.024, 0.062,
0.031<=k=0.043
Type I 0.053<k=0.054 24
0.057=«=<0.06
0.068<«k=<0.07
Nonconvergence others 44

and we have chosen 0.0&8K <0.07<1 in this papere is
the amplitude of{,) and({,)=0(e") is assumedN is the
truncation order of the Chebyshev polynomials in E2i6).

First, we consider the dependence of the solutigy on
an initial value(Q,);, of the iteration for given values df
and U... Solving the nonlinear equatiaf3.10) with various
initial values of the iteration,

(U(X))ini = U., tanh kX,

wherek=0.001x1, i=1,2,...,70, weobtain three types of
solutions depending on the initial values fok,=0.61, K

PHYSICAL REVIEW E 70, 056210(2004)

<u>
06 =
04} 7
0.2

-100 -75 -50 -25 25 50 75 100
—0./
o

P
Z7-0.6

FIG. 3. Solutions of the model equati@8.10) for three param-
eters: — K=0.05; —-—,K=0.06 — — — —,K=0.07.

Finally, we consider the dependence of the solutiap
on the variable transform parametérin Eq. (2.3) for N
=13, U,.=0.61, and«x=0.06. Calculating five cases df
=0.01xi, i=4,5,...,8, wehave found a convergent solu-
tion for each of the three casé&=0.05, 0.06, and 0.07.
Figure 3 shows the solutions fé¢=0.05, 0.06, 0.07. Note
that the solutions fok =0.04 andK=0.08 may also converge
for other values ofx. Model solutions in Fig. 3 depend
weakly on the parametek because we have omitted the
terms of order higher tha®@(KN1), N;=7 andO(eV), N=13.
Appropriate selection oK yields the convergent solution
and the most appropriate selection does the solution for the
smallest truncation numbét. Furthermore, we could obtain
the same solution for various valueskfonly if we choose

=0.06, andN=13. Figure 1 shows the three types of solu-large enough values & andN;, because the parametéris
tions denoted by dot-dashed, broken, and solid curves whictelated to the variable transfor(2.3). We can hence expect
are referred to as types I, Il, and Ill, respectively. Table Ithat the model solutions are independent of the paranketer

shows the convergence of solutions for various values.of for
A convergent solution can be found for each of 26 among 71
values ofk, and 24 among the 26 convergent solutions are
type lll. It is therefore reasonable to choose type Il as the

N;— o andN— .

C. Results

solution of the model equation in this case.

Second, we consider the dependence of the solyfigh
on the truncation ordeM for K=0.06 andJ,.=0.61. Figure 2
shows the solutions foN=11 (dot-dashed curye N=13
(broken curvg, andN=15 (solid curve. Since the solutions
for N=13 andN=15 are very close, the number BE=13 is
enough to obtain the convergent solution as reghrasthis
case. Note that a necessary numbeNadb obtain the con-
vergent solution depends dh,.

<u>
0.6 =
04t
021/

X
-100 -75 -50 -25 25 50 75 100
-0,

M4

L
-0.6

FIG. 2. Solutions of the model equati¢8.10) for three trunca-
tion orders: —-—N=11; — — — —N=13; —, N=15.

We compare numerical solutions of the KS equation for
three cases ob),,,=0.3,0.5,0.7 with solutions of the model
equation(3.10 for the values ofU., corresponding tdJ,,.
Each value ofJ.. is chosen in order to closely fit a numerical
solution to a model solution.

Figure 4 shows the time-averaged numerical solution
(thick curve for U,,,=0.3 and the model solutiqithin curve
for N=15,K=0.035,x=0.031, andJ..=0.39. The final time
in Eq. (4.3) is T=200 000. The time-averaged solution

<u>
0.75
0.5
0.25

X
-2p0 -150 -100 -50 50 100 150 200

-0.5

-0.75

FIG. 4. Model solution(thin curve$ of Eg. (3.10 for U,
=0.39 and numerical solutiofthick curves for U,,,=0.3.
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<u> <u>
0.6 0.75
0.4 0.5
0.2 0.25
X X
-200 -150 -100 -50 50 100 150 200 -200-150 -100 -50 50 100 150 200
—o. -0.2
4 _
06 ~0.75
FIG. 5. Model solution(thin curves of Eq. (3.10 for U, FIG. 6. Model solution(thin curves of Eq. (3.10 for U,
=0.47 and numerical solutiofthick curves for U,,=0.5. =0.67 and numerical solutiofthick curves for U,,,=0.7.
shows a small wavy disturbance corresponding to the chaotic N-2N-2
pattern and the disturbance is expected to disappear for PE(0) = > D (FO)OEETY Db,
larger final timesT. Its profile near the boundaries= +L/2 n=1 m=1

deviates largely from the model solution due to a mismath,vhere t denotes the Hermitian conjugate i is an ar-
between Eqs(4._1) and(4.2) ‘Tﬂ the boundaries and finiteness bitrary function ofli. The operatofP: has a preferable char-
of the system siz&, which is referred to as boundary con- acteristic

tamination. The boundary value.. differs from U,, as a
result of boundary contamination. Peliy = Upps
Figure 5 shows the time-averaged numerical solution

(thick curve for U,,,=0.5 and the model solutiggthin curve while the derivation of a model equation is much more com-
for N=15, K=0.05, k=0.038, andU.,=0.47. The final time  Plicated if we useP¢ instead ofP. The difference between

in Eq. (4.3) is T=200 000. Pr and P is not so large becauds is the main component

Figure 6 shows the time-averaged numerical solutiorflu to Eq.(3.8), and hence we can expect that the results
(thick curve for U,,,=0.7 and the model solutiatthin curve ~ obtained by using’r agree well with those bp.
for N=15, K=0.065,x=0.06, andU.,=0.67. The final time The KS equation has two different spatial scales which
in Eq. (4.3) is T=200 000. Note that the boundary contami- correspond to chaotic motion and the representative change
nation in Fig. 6 is the smallest among our results. of mean values. The scales are separate from each other,
Agreement of the numerical results with the model solu-Which means that the ratio of the scale of mean values to that

tions is fairly good. Note that there is a slight ambiguity for Of chaotic motion is very large. This is one of the main
the model solutions due to the dependence of the solution§asons why the present results, obtained by the projection

on K because of the omission of higher-order terms, a®Perator method, are satisfactory. It should be interesting to
shown in Fig. 3. apply this method to a problem for which the representative

scale of chaotic motion is similar to that of the mean values,
such as the problem of the energy spectrum of the KS equa-
V CONCLUDING REMARKS AND DISCUSSION tion with a periodic boundary condition.

We derived a closed equation for mean vallg) from
the KS equation using a projection operator. Good agreement ACKNOWLEDGMENT
I?Jetit&esers]hso?/l/us“?hnz; (t)r]:etherg]ggieolnegu:ﬁ;gra:%tﬂgg]?:%i!esfﬁ- The authors would like to express their thanks to Dr. K.
for the derivation of an gvelra ce l?ation from the KS e ua_beno of Kyushu University for his valuable discussions on
tion g€ €q qUaghe dynamic RG method.

We next comment on the projection operafddefined in

Eq. (2.8). The operator projects onto only and thus APPENDIX A: EXACT EVALUATION

OF MEMORY FUNCTION

Ply =0y, Using an identity
and .
g'oh = glh - J dt,e"WAPA QN (A1)
Pl # Oy M# 1. 0
we deleteQ in the left-hand side of EqA1) iteratively and
Another candidate for a projection operatof 73 then obtain
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el = f dt,etWAPAIA + f dt; f dt,eWAPA el ApA g2
1 2
- f dt, J dt, f dtze " WAPAglIAPA el IAPA glat
0 0 0

t ty th-1
+(=1)" f dt, f dty- - f dt,e T WAPAetTIAPA - .- -t APA g 4 - (A2)
0 0 0

From Egs.(A2), (2.11), and(2.10 we obtain

Tt = —<[A & ONnft) | J  LAe e QN (AN ]0y)
(@) 0 (&) (09
f J ([A€2" ONRI0y) ([Ae 220, J0,) (A WAL ]0y)
du | o
() (@)
- (-1 f dty J dt, - f o, TNl (AR Gy (a2 b, (A3)
(0) (09 (0
[
Using the relati . NI
sing the re aAlon f M(dt= (NG )]><U}2> <Nm(U)U1>, 83)
(A ONJy) _ (A NGB _ (A Buli) (Nolh) : <”1>
(0 (@) @ (@
= Ym0, and
we can derive Eq(2.14) from Eq. (A3).
APPENDIX B: INTEGRAL OF MEMORY FUNCTION f $(t)dt= (G (= )><<Aul>> <ul>, (B4)
l
Integrating Eq(2.14) we obtain
fx I = i - 1)"fo tﬂm(t)dtl f”’ qb(t)dt}n respectively. We obtain a strict relation
0 n=0 0 0
= N (N [G(=)])
rdt=Qp-———-, BS
| tntv J, Tt o) ®
= (B1)

1+ JO $(t)dt from Egs.(B1), (B3), (B4), and(2.15. Substituting Eq(B5)

into Eq.(2.12 we obtain
where we have used the formula

© to ty th-1 N-2
jo dtofo dtlfo dtZ ‘e fo dtn f(tn) 2 Lmj<aj(°°)> + <Nm[l’_‘j(oo)]> + Fm - 0, (BG)

=1
XQ(th-1—tp) -+ gty — t)g(to — t1)

* * n which is the same relation obtained from Eg.7) aftert
:f f(t)d'{f g(t)dt] : (B2) —oo and ensemble averaging, and EB6) therefore gives
0 0 no useful information about mean quantity, although it is an
Integrals of Eqs(2.16) and(2.17) yield exact relation.
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