
Mean solutions for the Kuramoto-Sivashinsky equation with incoming boundary conditions

Youichi Kitahara*
Department of Earth System Science and Technology, Interdisciplinary Graduate School of Engineering Sciences,

Kyushu University, Kasuga 816-8580, Japan

Makoto Okamura†

Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
(Received 25 December 2003; published 18 November 2004)

We consider herein the Kuramoto-Sivashinsky(KS) equation with incoming boundary conditions. Using a
projection operator method, we have derived a set of closed equations for the mean quantities, called a model
equation, from the KS equation. One of the characteristics of the model equation is that it does not include any
empirical parameters. The adequacy of the model equation is verified by comparing solutions of the model
equation with time-averaged solutions obtained from the numerical simulation of the KS equation.
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I. INTRODUCTION

Although the solutions of chaotic equations are not pre-
dictable, the mean or large-scale components of these equa-
tions are predictable. The ability to predict the mean quantity
is important, especially in turbulent flows. In the present pa-
per, we consider the KS equation, rather than the Navier-
Stokes equation, because it is one of the simplest partial
differential equations for treating chaos or turbulence.

Yakhot [1] suggested that the large-scale properties of the
KS equation with random initial conditions can be modeled
by a noisy Burgers equation using the dynamic renormaliza-
tion group(RG) method. The dynamic RG method has also
been applied to the KS equation with random forcing in the
field of surface growth[2,3]. The dynamic RG method ad-
equately predicts both the roughness exponent and the dy-
namic exponent which characterize the scaling laws of the
interface width.

However, although it is possible to determine the ratio
D /n3 of the noise strength squaredD to the cube of the
effective diffusion constantn from the fixed points of the RG
flow equation,D andn remain unresolved. Hence it is nec-
essary to rely on numerical simulation in order to determine
the effective diffusion constant, which is an important value
for obtaining information on mean quantities. Some numeri-
cal simulations have estimated the effective diffusion con-
stantn to be n<10 for infinitely large scales with periodic
boundary conditions[4,5] and with fixed boundary condi-
tions [6].

So far, only second-order statistical quantities such as the
interface width and energy spectrum have been investigated
for the KS equation because the first-order statistical quantity
is zero and thus unimportant for the KS equation with peri-
odic boundary conditions. Sakaguchi[6] numerically studied
the KS equation with fixed boundary conditions and esti-

mated the effective diffusion constant from its shocklike
mean solution.

In accordance with Yakhot’s suggestion, we can assume
that the ensemble averagekul of a solutionu for the KS
equation satisfies the Burgers equation
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]2kul
] x2 = 0, s1.1d

wheren is the effective diffusion constant. The constantn is
an empirical parameter because its value cannot be deter-
mined by the dynamic RG method. The closed equation(1.1)
of the mean quantitykul is called a model equation of the KS
equation. The solution of the model equation is in good
agreement with the time-averaged numerical profile of the
KS equation under certain fixed boundary conditions[6] if a
suitable value is chosen for the undetermined parametern.

In the present paper, we derive another model equation for
the KS equation using the projection operator method. One
of the characteristics of the derived model equation is that it
does not include any undetermined parameters such asn.
The procedure is similar to that reported by Sato and Oka-
mura [8], who derived an averaged equation from a forced
pendulum equation. However, the present calculation is
rather complicated because, unlike the pendulum equation
which is an ordinary equation, the KS equation is a partial
differential equation in one-dimensional space. We examine
the adequacy of the model equation by comparing its solu-
tions with time-averaged numerical solutions of the KS
equation.

II. DERIVATION OF AN AVERAGED EQUATION

We treat the KS equation

] u

] t
− u

] u

] x
+

] 2u

] x2 +
] 4u

] x4 = 0, s2.1d

with fixed boundary conditions
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us− `,td = − U`, us`,td = U`, s2.2d

whereU` is a given constant. The fixed boundary conditions
are used here instead of incoming boundary conditions(4.2)
because theoretically it is difficult to treat the incoming
boundary conditions at infinity. Note that both the fixed and
the incoming boundary conditions for averaging give the
same expressions,

kus− `,tdl = − U`, kus`,tdl = U`.

Using the variable transform

y = tanhKx, s2.3d

whereK is a given constant, we obtain from the KS equation
(2.1) and the boundary conditions(2.2)

] u

] t
= c1u
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] y
+ c2

] u

] y
+ c3

] 2u

] y2 + c4
] 3u

] y3 + c5
] 4u

] y4 ,

s2.4d

with boundary conditions

us− 1,td = − U`, us1,td = U`, s2.5d

where

c1 = Ks1 − y2d,

c2 = − 2K2ys1 − y2ds8K2 − 1 – 12K2y2d,

c3 = K2s1 − y2d2s8K2 − 1 – 36K2y2d,

c4 = 12K4ys1 − y2d3,

c5 = − K4s1 − y2d4.

Using anN-truncated series of Chebyshev polynomials of
the first kindTmsyd, we approximateusy,td as

usy,td = o
m=0

N

ûmstdTmsyd. s2.6d

Chebyshev transformation of Eq.(2.4) and elimination of the
highest termsûN−1std, ûNstd yield N−2 time evolution equa-
tions,

dûmstd
dt

= Nmfûstdg + o
j=1

N−2

Lmjûjstd + Fm,

m= 1,2, . . . ,N − 2, s2.7d

whereNmfûstdg, o j=1
N−2 Lmjûjstd, andFm denote nonlinear, lin-

ear, and forcing terms, respectively. There is no forcing term
in the KS equation(2.1) itself, whereas Eq.(2.7) has a forc-
ing term which arises from the fixed boundary conditions.

We introduce a projection operatorP as

Pfsûd ;
kfsûdû1l

kû1
2l

û1, s2.8d

where fsûd is an arbitrary function ofû and ûm; ûms0d. Us-
ing the projection operator[7], we can transform the nonlin-
ear termNmfûstdg into

Nmfûstdg = eLtfPNmsûd + QNmsûdg

= Vmû1std −E
0

t

Gmssdû1st − sdds+ rmstd,

s2.9d

where

Q ; 1 −P,

Vm ;
kNmû1l

kû1
2l

,

Gmstd ; −
kfLrmstdgû1l

kû1
2l

, s2.10d

rmstd ; expstQLdQNm. s2.11d

The first term of the right-hand side of Eq.(2.9) denotes the
projected term showing coherent motion. The second term is
also related to coherent motion, which is extracted from the
unprojected term. The memory functionGmstd in the second
term has an effect on the time dependent dissipation due to
chaotic mixing, which corresponds to the eddy viscosity in
turbulence. The last termrmstd is considered to be a fluctu-
ating force becausermstd is related to the unprojected part
QNm and its time evolution may be very complicated. A time
evolution operatorL is defined as

L ; o
n=1

N−2FNnsûd + o
j=1

N−2

Lnjûj + FnG ]

] ûn

.

Now we make three assumptions in order to derive an
averaged equation from Eq.(2.7).
Assumption 1.No correlation for an infinite time:

lim
t→`

kûmstdû1l = lim
t→`

kûmstdlkû1l.

Assumption 2.Steady state for an infinite time:

lim
t→`

d

dt
kûmstdû1l = 0.

Assumption 3.Loss of memory effect for large time:

E
0

`

uGmssduds, `.

Note that Assumption 3 gives the relation
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lim
t→`

E
0

t

Gmssdû1st − sdds= lim
t→`

û1stdE
0

`

Gmssdds.

Using the above assumptions and Eq.(2.7), we obtain an
averaged equation:

Vmkû1s`dl + o
i=1

N−2

Lmikûis`dl − gmkû1s`dl + Fm = 0,

s2.12d

where

gm ; E
0

`

Gmstddt. s2.13d

The averaged equation is derived under reasonable assump-
tions but is not a closed equation for mean quantitykûis`dl
becausegm includes higher-order moments and depends on
the time history.

We now show that the memory functionGmstd can be
evaluated numerically as follows[9,10]. Referring to Appen-
dix A, we can rewrite the memory functionGmstd, Eq.(2.10),
as

s2.14d

where

cmstd = − fm
Nstd + Vmfstd, s2.15d

fm
Nstd =

1

kû1
2l
KdNmfûstdg

dt
û1L , s2.16d

fstd =
1

kû1
2l
Kdû1std

dt
û1L . s2.17d

We can evaluate the values of the right-hand side of Eqs.
(2.16) and (2.17) through numerical simulation. Laplace
transform of Eq.(2.14) and formula(B2) yield

Ḡmszd = −
f̄m

Nszd − Vmf̄szd

1 + f̄szd
,

where Ḡmszd, f̄m
Nszd, and f̄szd are Laplace transforms of

Gmstd, fm
Nstd, and fstd, respectively. The memory function

Gmstd can thus be evaluated.

III. MODEL EQUATION

It is possible to evaluategm in Eq. (2.12) exactly by using
Eq. (2.14). However, the result is trivial and provides no

useful information about mean quantitykûml as shown in
Appendix B. Instead we can approximately evaluategm,

which is a function ofGmstd, by usingGm;Gms0d and Ġm

; Ġms0d. Here, we make an assumption about the memory
function form.
Assumption 4.Form of memory function:

Gmstd = Gm exps− amtd, am . 0. s3.1d

The first-order Taylor expansion of Eq.(3.1) around t=0
shows

Ġm = − Gmam. s3.2d

From Eqs.(3.1), (3.2), and(2.13) we obtain

gm = −
Gm

2

Ġm

,

where

Gm = cms0d, s3.3d

Ġm = ċms0d − cms0dfs0d. s3.4d

We have other expressions forGm and Ġm such as

Gm = −
kfLQNmgû1l

kû1
2l

, s3.5d

Ġm = −
kfLsQLdQNmgû1l

kû1
2l

, s3.6d

which appeared in the paper by Sato and Okamura[8]. The
present expressions(3.3) and (3.4) are simpler than Eqs.
(3.5) and (3.6) because operators such asL and Q are not
included. Note that we make no assumptions for the Markov
process such asGmstd~dstd.

Here, we make further assumptions.
Assumption 5.Symmetry of mean value:

kûms`dl = 0, if m is even.

The KS equation has an antisymmetry solution under the
antisymmetry initial and boundary conditions because the
KS equation is invariant under transformationsx→−x and
u→−u. However, a numerical solution breaks antisymmetry
because of its chaotic characteristics and numerical errors,
while its mean solution is expected to have antisymmetry.
Assumption 6.Zero variance:

kûm
n l = kûmln. s3.7d

Numerical results show that the representative scale of the
mean profile is much larger than that of chaotic or fluctuating
motion [6] and hence Eq.(3.7) is a good approximation for
smallerm, while Eq.(3.7) is likely to be invalid for largerm
because
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kûm
n l @ kûmln < 0.

However, the invalidity of Eq.(3.7) for larger m has little
influence on the derivation of a model equation becausekûml
rapidly approaches zero for largerm:

kûml = Osemd, e ! 1. s3.8d

Assumption 6 is therefore a good approximation due to sepa-
ration between the scale of mean profile and that of chaotic
motion. This assumption may be the most disputable among
those made in the present study.
Assumption 7. Initial value on the attractor:

kûml = kûms`dl. s3.9d

Condition (3.9) does not generally mean an initial value on
the attractor. However, the variance for the main components
is small and thus

ûm < kûml, ûms`d < kûms`dl,

for small m, which is consistent with Assumption 7. For
largem, Eq. (3.9) is also satisfied approximately because of

kûml < 0, kûms`dl < 0,

although

ûm Þ kûml.

From Eqs. (3.7), (3.9), and (2.12) we obtain a model
equation

Vmkû1l + o
i=1

N−2

Lmikûil − gmkû1l + Fm = 0,

m= 1,2, . . . ,N − 2, s3.10d

which is a closed nonlinear algebraic equation ofkûml. The
highest order termkûNl is determined from Eq.(2.5).

IV. COMPARISON OF MODEL SOLUTIONS
AND NUMERICAL RESULTS

In this section, we compare solutions of the model equa-
tion (3.10) and numerical solutions of the KS equation(2.1)
with incoming boundary conditions(4.2).

A. Numerical conditions

We have used a finite difference method for the spatial
derivative and the fourth-order Runge-Kutta method for time
evolution. The spatial differenceDx and the time stepDt are
chosen to beDx=0.33 andDt=0.0002, respectively. The sys-
tem sizeL is L=400. The antisymmetry initial condition is
chosen to be

usx,0d =H Unu + 0.1 sinsx/Î2d, for x ù 0,

− Unu + 0.1 sinsx/Î2d, for x , 0,
s4.1d

where 1/Î2 is the wave number of the most unstable mode
and Unu is a given parameter. The incoming boundary con-
ditions atx= ±L /2 are

usL/2,td = up
+s0,td, us− L/2,td = up

−s0,td, s4.2d

whereup
+sx,td and up

−sx,td are solutions of the KS equation
(2.1) with a periodic boundary condition under

1

L
E

−L/2

L/2

up
+sx,tddx= Unu,

and

1

L
E

−L/2

L/2

up
−sx,tddx= − Unu,

respectively. Since profiles atx=−L /2 andx=L /2 travel to
the right and to the left, respectively, we have called Eq.
(4.2) the incoming boundary condition. It is easy to show
that up

+ travels to the left by transformationsU=up
+−Unu, X

=x+Unut, andT= t. Note that the boundary conditions(4.2)
differ from those by Sakaguchi[6].

The average for numerical data is obtained by time aver-
aging defined as

ūsxd =
1

T − T0
E

T0

T

usx,tddt, s4.3d

where T0 is selected in order to discard data far from the
attractor and we setT0=1000. The ensemble average for
t.T0 is independent of time as a result of statistical station-
arity, and hence we assume that the ensemble average agrees
with the time average due to ergodicity. We have made a
correction

usx,td −
1

L
E

−L/2

L/2

usx,tddx→ usx,td

at every time step in order to maintain antisymmetry for the
mean profile.

B. Convergence of model solution

We solve the nonlinear algebraic equation(3.10) for kûml
using Newton’s method. Since the equation is extremely
complicated, we have omitted the terms of order higher than
OsK7d and OseNd where K and e are assumed to be small
parameters.K is concerned with the variable transform(2.3)

FIG. 1. Three types of solutions of the model equation(3.10) for
U`=0.61,K=0.05, andN=13: —·—, type I; – – – –, type II; —,
type III.
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and we have chosen 0.015øKø0.07!1 in this paper.e is
the amplitude ofkû1l and kûnl=Osend is assumed.N is the
truncation order of the Chebyshev polynomials in Eq.(2.6).

First, we consider the dependence of the solutionkûml on
an initial valuekûmlini of the iteration for given values ofK
and U`. Solving the nonlinear equation(3.10) with various
initial values of the iteration,

kusxdlini = U` tanhkx,

wherek=0.0013 i, i =1,2, . . . ,70, weobtain three types of
solutions depending on the initial values forU`=0.61, K
=0.06, andN=13. Figure 1 shows the three types of solu-
tions denoted by dot-dashed, broken, and solid curves which
are referred to as types I, II, and III, respectively. Table I
shows the convergence of solutions for various values ofk.
A convergent solution can be found for each of 26 among 71
values ofk, and 24 among the 26 convergent solutions are
type III. It is therefore reasonable to choose type III as the
solution of the model equation in this case.

Second, we consider the dependence of the solutionkûml
on the truncation orderN for K=0.06 andU`=0.61. Figure 2
shows the solutions forN=11 (dot-dashed curve), N=13
(broken curve), andN=15 (solid curve). Since the solutions
for N=13 andN=15 are very close, the number ofN=13 is
enough to obtain the convergent solution as regardsN in this
case. Note that a necessary number ofN to obtain the con-
vergent solution depends onU`.

Finally, we consider the dependence of the solutionkûml
on the variable transform parameterK in Eq. (2.3) for N
=13, U`=0.61, andk=0.06. Calculating five cases ofK
=0.013 i, i =4,5, . . . ,8, wehave found a convergent solu-
tion for each of the three casesK=0.05, 0.06, and 0.07.
Figure 3 shows the solutions forK=0.05, 0.06, 0.07. Note
that the solutions forK=0.04 andK=0.08 may also converge
for other values ofk. Model solutions in Fig. 3 depend
weakly on the parameterK because we have omitted the
terms of order higher thanOsKN1d, N1=7 andOseNd, N=13.
Appropriate selection ofK yields the convergent solution
and the most appropriate selection does the solution for the
smallest truncation numberN. Furthermore, we could obtain
the same solution for various values ofK only if we choose
large enough values ofN andN1, because the parameterK is
related to the variable transform(2.3). We can hence expect
that the model solutions are independent of the parameterK
for N1→` andN→`.

C. Results

We compare numerical solutions of the KS equation for
three cases ofUnu=0.3,0.5,0.7 with solutions of the model
equation(3.10) for the values ofU` corresponding toUnu.
Each value ofU` is chosen in order to closely fit a numerical
solution to a model solution.

Figure 4 shows the time-averaged numerical solution
(thick curve) for Unu=0.3 and the model solution(thin curve)
for N=15, K=0.035,k=0.031, andU`=0.39. The final time
in Eq. (4.3) is T=200 000. The time-averaged solution

TABLE I. Values of k and its number for three types of
solutions.

Type of solutions Value ofk Number ofk

Type I k=0.001 1

Type II k=0.006 1

k=0.024, 0.062,

0.031økø0.043

Type III 0.053økø0.054 24

0.057økø0.06

0.068økø0.07

Nonconvergence others 44

FIG. 2. Solutions of the model equation(3.10) for three trunca-
tion orders: —·—,N=11; – – – –,N=13; —, N=15.

FIG. 3. Solutions of the model equation(3.10) for three param-
eters: —,K=0.05; —·—,K=0.06; – – – –,K=0.07.

FIG. 4. Model solution(thin curves) of Eq. (3.10) for U`

=0.39 and numerical solution(thick curves) for Unu=0.3.
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shows a small wavy disturbance corresponding to the chaotic
pattern and the disturbance is expected to disappear for
larger final timesT. Its profile near the boundariesx= ±L /2
deviates largely from the model solution due to a mismatch
between Eqs.(4.1) and(4.2) at the boundaries and finiteness
of the system sizeL, which is referred to as boundary con-
tamination. The boundary valueU` differs from Unu as a
result of boundary contamination.

Figure 5 shows the time-averaged numerical solution
(thick curve) for Unu=0.5 and the model solution(thin curve)
for N=15, K=0.05,k=0.038, andU`=0.47. The final time
in Eq. (4.3) is T=200 000.

Figure 6 shows the time-averaged numerical solution
(thick curve) for Unu=0.7 and the model solution(thin curve)
for N=15, K=0.065,k=0.06, andU`=0.67. The final time
in Eq. (4.3) is T=200 000. Note that the boundary contami-
nation in Fig. 6 is the smallest among our results.

Agreement of the numerical results with the model solu-
tions is fairly good. Note that there is a slight ambiguity for
the model solutions due to the dependence of the solutions
on K because of the omission of higher-order terms, as
shown in Fig. 3.

V. CONCLUDING REMARKS AND DISCUSSION

We derived a closed equation for mean valuekûml from
the KS equation using a projection operator. Good agreement
between solutions of the model equation and numerical so-
lutions shows that the projection operator method is useful
for the derivation of an average equation from the KS equa-
tion.

We next comment on the projection operatorP defined in
Eq. (2.8). The operator projects onto onlyû1 and thus

Pû1 = û1,

and

Pûm Þ ûm, mÞ 1.

Another candidate for a projection operator is[7]

PFfsûd ; o
n=1

N−2

o
m=1

N−2

kfsûdûnlfkûû†l−1gnmûm,

where † denotes the Hermitian conjugate andfsûd is an ar-
bitrary function ofû. The operatorPF has a preferable char-
acteristic,

PFûm = ûm,

while the derivation of a model equation is much more com-
plicated if we usePF instead ofP. The difference between
PF andP is not so large becauseû1 is the main component
due to Eq.(3.8), and hence we can expect that the results
obtained by usingPF agree well with those byP.

The KS equation has two different spatial scales which
correspond to chaotic motion and the representative change
of mean values. The scales are separate from each other,
which means that the ratio of the scale of mean values to that
of chaotic motion is very large. This is one of the main
reasons why the present results, obtained by the projection
operator method, are satisfactory. It should be interesting to
apply this method to a problem for which the representative
scale of chaotic motion is similar to that of the mean values,
such as the problem of the energy spectrum of the KS equa-
tion with a periodic boundary condition.
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APPENDIX A: EXACT EVALUATION
OF MEMORY FUNCTION

Using an identity

etQL = etL −E
0

t

dt1e
st−t1dLPLet1QL, sA1d

we deleteQ in the left-hand side of Eq.(A1) iteratively and
then obtain

FIG. 5. Model solution(thin curves) of Eq. (3.10) for U`

=0.47 and numerical solution(thick curves) for Unu=0.5.
FIG. 6. Model solution(thin curves) of Eq. (3.10) for U`

=0.67 and numerical solution(thick curves) for Unu=0.7.
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etQL = etL −E
0

t

dt1e
st−t1dLPLet1L +E

0

t

dt1E
0

t1

dt2e
st−t1dLPLest1−t2dLPLet2L

−E
0

t

dt1E
0

t1

dt2E
0

t2

dt3e
st−t1dLPLest1−t2dLPLest2−t3dLPLet3L + ¯

+ s− 1dnE
0

t

dt1E
0

t1

dt2 ¯ E
0

tn−1

dtne
st−t1dLPLest1−t2dLPL ¯ estn−1−tndLPLetnL + ¯ . sA2d

From Eqs.(A2), (2.11), and(2.10) we obtain

Gmstd = −
kfLetLQNmgû1l

kû1
2l

+E
0

t

dt1
kfLet1LQNmgû1l

kû1
2l

kfLest−t1dLû1gû1l
kû1

2l

−E
0

t

dt1E
0

t1

dt2
kfLet2LQNmgû1l

kû1
2l

kfLest1−t2dLû1gû1l
kû1

2l
kfLest−t1dLû1gû1l

kû1
2l

− s− 1dnE
0

t

dt1E
0

t1

dt2 ¯ E
0

tn−1

dtn
kfLetnLQNmgû1l

kû1
2l

kfLestn−1−tndLû1gû1l
kû1

2l
¯

kfLest−t1dLû1gû1l
kû1

2l
+ ¯ . sA3d

Using the relation

kfLetLQNmgû1l

kû1
2l

=
kfLetLNmgû1l

kû1
2l

−
kfLetLû1gû1l

kû1
2l

kNmû1l
kû1

2l

= cmstd,

we can derive Eq.(2.14) from Eq. (A3).

APPENDIX B: INTEGRAL OF MEMORY FUNCTION

Integrating Eq.(2.14) we obtain

E
0

`

Gmstddt = o
n=0

`

s− 1dnE
0

`

cmstddtFE
0

`

fstddtGn

=

E
0

`

cmstddt

1 +E
0

`

fstddt

, sB1d

where we have used the formula

E
0

`

dt0E
0

t0

dt1E
0

t1

dt2 ¯ E
0

tn−1

dtn fstnd

3gstn−1 − tnd ¯ gst1 − t2dgst0 − t1d

=E
0

`

fstddtFE
0

`

gstddtGn

. sB2d

Integrals of Eqs.(2.16) and (2.17) yield

E
0

`

fm
Nstddt =

kNmfûs`dglkû1l − kNmsûdû1l
kû1

2l
, sB3d

and

E
0

`

fstddt =
kû1s`dlkû1l − kû1

2l
kû1

2l
, sB4d

respectively. We obtain a strict relation

E
0

`

Gmstddt = Vm −
kNmfûs`dgl

kû1s`dl
, sB5d

from Eqs.(B1), (B3), (B4), and(2.15). Substituting Eq.(B5)
into Eq. (2.12) we obtain

o
j=1

N−2

Lmjkûjs`dl + kNmfûs`dgl + Fm = 0, sB6d

which is the same relation obtained from Eq.(2.7) after t
→` and ensemble averaging, and Eq.(B6) therefore gives
no useful information about mean quantity, although it is an
exact relation.
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